274. Contribution à l'étude du système quinaire Ca⁺⁺--NH₄⁺--H⁺--NO₃⁻--PO₄⁻⁻⁻--H₂O. XIII. Le système quaternaire Ca⁺⁺--H⁺--NO₃⁻--PO₄⁻⁻⁻--H₂O à 0⁰ par R. Flatt, G. Brunisholz et G. Fell.

(11 X 54)

Dans une publication précédente¹), nous nous sommes occupés du diagramme de solubilité du système quaternaire $Ca^{++}-H^+-NO_3^--PO_4^{---}-H_2O$, établi pour la température de 25°. Nous communiquons, dans le présent mémoire, les résultats que nous avons obtenus en étudiant ce même système à 0°.

Au début de nos travaux sur ce système, nous n'avions aucun renseignement précis au sujet des phases solides qui apparaissent à la température de 0° et de la composition des solutions saturées, ni dans le système quaternaire, ni dans les deux systèmes ternaires limites $Ca^{++}-H^+-NO_3^--H_2O$ et $Ca^{++}-H^+-PO_4^{---}-H_2O$. Nous pensions retrouver, comme phases solides stables à 0°, les mêmes sels qu'à 25°. Nos expériences ont effectivement montré l'existence des phases solides stables qui suivent: $Ca(NO_3)_{2,}4H_2O$ (« Ca^4 »); $Ca(NO_3)_{2,}2H_2O$ (« Ca^2 »); $Ca(NO_3)_2$ (« Ca^6 »); $CaH_4(PO_4)_2, H_2O$ (« Ca^I »); $CaHPO_4, 2H_2O$ ou $CaHPO_4$ (« Ca^{II} »). Par contre, le nitrate de calcium trihydraté (« Ca^3 ») ne peut donner, à 0°, que des solutions métastables (sursaturées en Ca^4 ou en Ca^2). Le diagramme de solubilité ne montre donc pas de surface de saturation du Ca^3 . Il y a une ligne à saturation stable de $Ca^4 + Ca^2$.

Cette constatation est en plein accord avec les indications de $M. H. R. J. Plusje^2$) qui a trouvé que le Ca³ n'existe pas, à 5°, comme phase solide dans le système quaternaire Ca⁺⁺-H⁺-NO₃⁻⁻ PO₄⁻⁻⁻-H₂O.

Quelques essais d'orientation nous ont montré que la ligne à 2 sels $Ca^{I} + Ca^{4}$ suit, dans la projection sur le carré de base, à peu près la diagonale $Ca(NO_{3})_{2}-H_{3}PO_{4}$ comme nous l'avions déjà trouvé pour 25°. On pouvait prévoir que, par rapport à 25°, le domaine de cristallisation du Ca⁴ serait agrandi au détriment des nitrates de calcium moins riches en eau de cristallisation. L'expérience a confirmé cette supposition: la ligne qui marque le début du surplomb de la

¹) Helv. **37**, 607 (1954).

²) M. H. R. J. Plusjé, Staatsmijnen Geleen, "Physico-chemical Investigations on the Treatment of Rock Phosphate with Nitric Acid", thèse, Delft 1946.

surface du Ca⁴ se trouve, à 0°, dans les régions des solutions contenant environ 90 équiv.- % H⁺ et 10 équiv.- % Ca⁺⁺.

Résultats.

Les valeurs réunies dans les tableaux I, II, III et IV donnent les résultats de nos essais de solubilité faits à la température de 0°. Elles sont calculées pour 100 équivalentsgrammes d'électrolytes dissous.

Tableau I.

Nº	éq% Ca++	éq% H+	éq% NO ₃ -	molg H ₂ O	phases solides
1	100,0	0,0	100,0	464	h
2	53,3	46,7	100,0	432	
3	20,7	79,3	100,0	334	
4	13,6	86,4	100,0	284	Ca ⁴
5	9,1	90,9	100,0	208	
6	8,0	92,0	100,0	170	
7	8,4	91,6	100,0	158	[]
8	8,5	91,5	100,0	157	
9	8,6	91,4	100,0	157	$Ca^4 + Ca^2$
10	8,6	91,4	100,0	153	
11	10,1	89,9	100,0	145	Ca ⁴ (métastable)
12	7,1	92,9	100,0	150	
13	7,2	92,8	100,0	147	$\begin{bmatrix} 1 & Ca^2 \end{bmatrix}$
14	4,9	95,1	100,0	134	
15	2,5	97,5	100,0	103	
16	2,5	97,5	100,0	104	$Ca^2 + Ca^0$
17	2,5	97,5	100,0	104]]

Système ternaire Ca^{++} — H^+ — NO_3^- — $H_2O \ge 0^{\circ}$.								
éq%	éq%	éq%	molg	phases s				
Ca++	H+	NO ₃ -	H ₂ O					

	Tableau II.	
Système	quaternaire Ca ⁺⁺ —H ⁺ —NO ₃ ⁻ —PO ₄ —H ₂ O à O	٥.
	Points invariants de l'isotherme de 0º.	

Nº	éq% Ca++	éq% H+	éq% NO ₃ -	éq% PO ₄	molg H ₂ O	phases solides	
R	93,5	6,5	91,4	8,6	433	$\begin{array}{c} Ca^{I} + Ca^{II} + Ca^{4} \\ Ca^{I} + Ca^{4} + Ca^{2} \\ Ca^{I} + Ca^{2} + Ca^{0} \\ Ca^{4} + Ca^{2*} \\ Ca^{2} + Ca^{0*} \\ Ca^{I} + Ca^{II**} \end{array}$	(moy.essais 18—19)
S	15	85	26	74	70		(par interpolation)
U	(12)	(88)	(26)	(74)	(50)		(par interpolation)
X	8,6	91,4	100,0	0,0	156		(moy.essais 8—10)
Z	2,5	97,5	100,0	0,0	104		(moy.essais 15—17)
W	26,1	73,9	0,0	100,0	467		(essai 26)

*) Système limite ternaire Ca⁺⁺-H⁺-NO₃⁻-H₂O. **) Système limite ternaire Ca⁺⁺-H⁺-DO -----H₂O.

Tableau III.

Système quaternaire Ca⁺⁺--H⁺--NO₃⁻--PO₄⁻⁻⁻-H₂O à 0^o. Lignes à 2 sels.

·									
Nº	éq% Ca++	éq% H+	éq% NO ₃ ~	éq% PO ₄	molg H ₂ O	phases solides			
	a) Ligno à 2 sals Cal + Call								
10	a) inglie a $2 \sin (a^2 + ba^2)$								
10	93,5	6,5	91,4	8,6	434	$Ca^{I}+Ca^{II}+Ca^{4}$			
19	93,5	6,5	91,4	8,6	433				
$\frac{20}{21}$	92,4	7,6	89,9	10,1	490				
21	88,4	11,6	84,0	16,0	533				
22	88,1	11,9	83,8	16,2	539				
23	79,4	20,6	71,8	28,2	590	$Ca^{I}+Ca^{II}$			
24	60,0	40,0	46,7	53,3	596				
25	47,0	53,0	29,2	70,8	565				
26	26,1	73,9	0,0	100,0	462	J			
			b) Ligne	à 2 sels Ca	$1 + Ca^4$	-			
27	80,8	19,2	79,0	21,0	385	n			
28	64.4	35.6	63.2	36.8	322				
29	58,7	41,3	57.0	43,0	304				
30	46.7	53.3	46.5	53.5	260				
31	24.9	75,1	26,0	74.0	174	a I. a I			
32	10.0	90,0	16.3	83.7	94.0	$Ca^{1}+Ca^{*}$			
33	9.9	90,1	18.0	82.0	84.5				
34	13.3	86.7	23.5	76.5	74.7				
35	13.7	86.3	24.1	75.9	71.4				
36	13,9	86,1	24,7	75,3	73,0	J			
			c) Ligne	à 2 sels Ca	4 + Ca ²				
8	8,5	91,5	100,0	0,0	157)			
9	8,6	91.4	100,0	0.0	157				
10	8,6	91,4	100,0	0.0	153	$Ca^4 + Ca^2$			
37	13,5	86,5	71,0	29,0	137)	coupe A		
			d) Ligne	à 2 sels Ca	2 + Ca ⁰				
15	2,5	97,5	100,0	0,0	103	n			
16	2,5	97,5	100,0	0,0	104				
17	2,5	97,5	100,0	0,0	104	$\left\{ Ca^{2}+Ca^{0}\right\}$			
38	5,2	94,8	68,1	31,9	84,1)	coupe A		

HELVETICA CHIMICA ACTA.

Tableau IV.
Système quaternaire Ca^{++} H^{+} NO_3^{-} $PO_4^{}$ $H_2O \ge 0^{\circ}$.
Surfaces à 1 sel.

Nº	éq% Ca++	éq% H+	éq% NO ₃ -	éq% PO ₄	molg H ₂ O	phases solides			
	a) Surface du Ca ^I								
39									
40	53,9	46,1	46,3	53,7	457	C.T			
41	40,5	59,5	23,7	76,3	506	$\left \right \left \left $			
42	18,4	81,6	13,5	86,5	221)			
	b) Surface du Ca ⁴								
43	69,9	30,1	89,9	10,1	423	h	1		
44	41,5	58,5	80,2	19,8	36 0				
45	19,8	80,2	73,0	27,0	278	Ca ⁴	coupe A		
46	10,5	89,5	69,9	30,1	199				
47	9,8	90,2	69,7	30,3	138	1,)		
48	69.1	30.9	84.6	15.4	400	1	I 1		
49	34,4	65,6	67,1	32,9	305	Ca4	coupe B		
50	12,9	87,1	56,8	43,2	197]))		
51	77,8	22,2	83,0	17,0	398	h	h		
52	55,7	44,3	66,2	33,8	330		11		
53	36,0	64,0	51,7	48,3	266				
54	27,7	72,3	45,9	54,1	236	Co4	C C		
55	10,8	89,2	33,2	66,8	136		Coupe C		
56	9,5	90,5	32,5	67,5	113	11	11		
57	10,8	89,2	33,7	6 6 ,3	91,0	} }			
58	14,9	85,1	36,1	63,9	84,6	J	l)		
59	16.0	84,0	36,9	63,1	80,7	Ca4	1		
60	19,6	80,4	39,4	60,6	79,7	métastable	coupe C		
61	72,2	27,8	83,4	16,6	394	1			
62	54,8	45,2	54,6	45,4	293	} Ca ⁴	1		
63	16,9	83,1	20,7	79,3	142	1)			
			c) Sur	face du Ca	2				
64	11,7	88,3	70,2	29,8	122	L Ca2	Coune A		
65	7,2	92,8	68,9	31,1	100	11 00	f coupe A		
66	12,3	87,7	34,0	66,0	67,8				
67	10,9	89,1	33,1	66,9	56,2	} Ca [∗]	} coupe C		
1			d) Sur	face du Ca	0		1		
68	12.0	88.0	33.7	66,3	55,9	Ca ⁰	coupe C		
60		07.9	790	91 1	09 5) metastable			
70	2,2	91,8	10,9	40.8	82,9 71 4	Cal			
71	7 9	92.8	40.5	59.5	59.9	1 Ca	1		
	1,4	04,0	40,0	00,0	00,2		1		

Diagrammes.

a) Le diagramme du système ternaire $Ca^{++}-H^+-NO_3^--H_2O$ à 0°. La fig. 1 montre le diagramme de solubilité du système ternaire $Ca^{++}-H^+-NO_3^--H_2O$, d'une part pour la température de 0°, d'autre part pour 25°.

Il est intéressant de constater, dans cette figure, l'extension considérable que prend le domaine de saturation du Ca⁴, quand on passe de 25° à 0° . Par ce changement de température, la région de cristallisation du Ca² est fortement déplacée vers des solutions plus riches en acide nitrique. L'effet du refroidissement est moins prononcé pour la solubilité du Ca³. Ainsi il arrive que toutes les solutions saturées de Ca³ deviennent métastables à basses températures. Lorsque la cristallisation de Ca⁴ et de Ca² s'amorce, il y a disparition de la phase solide Ca³ et on obtient une solution dont le point figuratif se trouve sur les courbes de saturation de Ca⁴ ou de Ca² ou encore au point d'intersection de ces deux courbes (point X).

On peut conclure de ces essais de solubilité que le nitrate de calcium trihydraté devient instable à basse température et se décompose suivant la réaction

$$\begin{array}{ccc} 2 \operatorname{Ca(NO_3)_2,3H_2O} & \to & \operatorname{Ca(NO_3)_2,4H_2O} + \operatorname{Ca(NO_3)_2,2H_2O} \\ & & \text{solide} & & \text{solide} & & \text{solide} \end{array}$$

Nous avons fait des essais spéciaux pour prouver l'instabilité du Ca³. En traitant, à 0[°], du nitrate de calcium trihydraté, en fort excès, avec des solutions aqueuses d'acide nitrique (env. 1 mol.-g $HNO_3 + 1,5$ mol.-g H_2O) et en introduisant, comme germes de cristallisation, de petites quantités de Ca⁴ et de Ca², nous avons régulièrement obtenu des solutions ayant la composition du point X (solution saturée de Ca⁴ + Ca² voir tableau II) et observé la disparition de la phase solide Ca³.

La courbe de saturation du Ca⁴ présente un faible «surplomb».

b) Le diagramme du système quaternaire $Ca^{++}-H^+-NO_3^{-}-PO_4^{---}-H_2O$ à 0°. La fig. 2 est la projection du diagramme spatial du système quaternaire sur le carré de base. Elle montre 4 domaines distincts représentant les surfaces de saturation du phosphate mono-calcique (Ca^I) et des nitrates de calcium tétrahydraté (Ca⁴), dihydraté (Ca²) et anhydre (Ca°).

La ligne à 2 sels $Ca^{I} + Ca^{4}$ (courbe RW) a été établie à l'aide des essais n°⁸ 18 à 26. Elle présente la même forme que la ligne correspondante du diagramme pour 25° (voir Helv. **37**, 615 (1954)), mais elle possède partout des cotes d'eau plus élevées (maximum de 600 mol.-g H₂O entre les points n°⁸ 23 et 24). En outre, elle est légèrement déplacée vers le «côté basique» par rapport au diagramme de 25°.

La surface de saturation du Ca^I est fortement inclinée dans la direction du point figuratif de HNO_3 . Les essais 39 à 42 ont donné

des solutions uniquement saturées en Ca^{I} . Ces points de repère nous ont facilité la construction des lignes d'égales cotes d'eau (isohydres de 100, 150, 200 550 mol.-g H₂O pour 100 équiv.-g d'électrolytes dissous).

Le nitrate de calcium tétrahydraté possède un domaine de saturation très étendu (env. 4/10 de la surface du carré). Comme pour 25°, la surface du Ca⁴ présente un «surplomb» qui est ici fortement déplacé vers le «côté acide» comparativement au diagramme de 25°. Dans la fig. 2, la ligne PQ indique le début du surplomb du Ca⁴. La ligne à 2 sels Ca⁴ + Ca² (ligne SX) est entièrement masquée par le surplomb.

Pour pouvoir établir, avec précision, la forme de la surface du Ca⁴, nous avons fait 3 coupes à travers le diagramme spatial, en établissant la solubilité du nitrate de calcium dans les solvants suivants:

 Les résultats de ces essais nous on permis de construire, dans la surface du Ca⁴, les isohydres de 100, 150, \dots 450 mol.-g H₂O.

Les surfaces de saturation du phosphate monocalcique et du nitrate de calcium tétrahydraté se coupent dans la ligne à 2 sels $Ca^{I} + Ca^{4}$ (essais n^{os} 27-36). Partant du point R (saturation en $Ca^{I} + Ca^{II} + Ca^{4}$), elle suit sensiblement la diagonale $Ca(NO_3)_2 - H_3PO_4$ du carré et atteint au point P la ligne du surplomb du Ca^4 , puis elle revient en arrière dans le surplomb du Ca^4 et se termine au point à 3 sels $Ca^{I} + Ca^{4} + Ca^{2}$ (point S de la fig. 2).

Nous n'avons pas étudié en détail les domaines de saturation des sels Ca² et Ca⁰. Les coupes A et C nous ont procuré des indications concernant la forme de la surface du Ca² et les lignes à 2 sels Ca⁴ + Ca² et Ca² + Ca⁰.

Les coordonnées du point à 3 sels $Ca^{I} + Ca^{4} + Ca^{2}$ (point S) ont été établies par interpolation (construction de l'intersection des lignes à 2 sels $Ca^{I} + Ca^{4}$ et $Ca^{4} + Ca^{2}$). Etant donné que ces deux lignes sont bien connues jusqu'au voisinage immédiat du point S, les valeurs pour S que nous indiquons au tableau II peuvent être considérées comme exactes à $\pm 1\%$ près. Toutefois nous ne pouvons pas affirmer si S est un point à 3 sels à saturation stable ou métastable.

Il résulte de nos essais de solubilité que le point à 3 sels $Ca^{I} + Ca^{2} + Ca^{0}$ (point U) se trouve au voisinage immédiat du point S. La connaissance de la forme de la surface du Ca^{I} et de la position de la ligne à 2 sels $Ca^{2} + Ca^{0}$ nous a permis de trouver approximativement ses coordonnées (voir Tableau II). Il est possible que U soit un point à 3 sels métastable.

Du point U part la ligne à 2 sels Ca^I + Ca⁰ (ligne UV) pour laquelle nous ne disposons pas de données expérimentales.

Les isohydres de 100 et 150 présentent une forme particulière. L'isohydre 100 quitte le côté $Ca(NO_3)_2 - HNO_3$ du diagramme dans la surface du Ca^o au voisinage du point Z. Elle atteint la ligne à 2 sels Ca² + Ca^o, puis continue dans la surface du Ca², d'abord visible, puis masquée par le surplomb du Ca⁴. Elle arrive à la ligne à 2 sels Ca⁴ + Ca², passe dans la surface du Ca⁴ et contourne le surplomb pour devenir visible sur la partie supérieure de la surface du Ca⁴. Au voisinage du point P, elle atteint la ligne à 2 sels Ca¹ + Ca⁴, puis elle se termine dans la surface du Ca¹ très près du sommet H₃PO₄ du carré.

L'isohydre 150 traverse la surface du Ca², d'abord visible, puis masquée; elle arrive à la ligne à 2 sels Ca⁴ + Ca², puis elle évolue dans le surplomb du Ca⁴, franchit la ligne PQ et apparaît dans la région supérieure du Ca⁴. Finalement elle passe à la surface du Ca¹.

Les isohydres de 200, 250, présentent une allure habituelle. 149

RÉSUMÉ.

1º Le diagramme de solubilité du système ternaire

Ca++-H+-NO₃--H₂O

est établi pour la température de 0°. A cette température, les phases solides stables sont: $Ca(NO_3)_2, 4H_2O$; $Ca(NO_3)_2, 2H_2O$; $Ca(NO_3)_2$ anhydre. Le sel $Ca(NO_3)_2, 3H_2O$ ne peut donner que des solutions saturées métastables.

2º Les résultats de 71 essais de solubilité ont permis de construire le diagramme de solubilité, à 0º, du système quaternaire

Ca++--H+--NO3---PO4----H2O

pour les régions dans lesquelles apparaissent des sels facilement solubles, soit le phosphate monocalcique et les nitrates de calcium tétrahydraté, dihydraté et anhydre.

> Laboratoire de Chimie minérale et analytique de l'Université de Lausanne.

275. Über die Einwirkung von Kohlenmonoxyd auf aliphatische Amine

von H. Winteler † 1), A. Bieler und A. Guyer.

(26. X. 54.)

Analog der Synthese von Formamid aus Ameisensäureestern und Ammoniak werden Mono- und Dialkylformamide durch Umsetzung von Ameisensäureestern mit aliphatischen Mono- und Diaminen erhalten²):

 $\begin{array}{ll} \mathrm{HCOOR} + \mathrm{NH}_3 &= \mathrm{HCONH}_2 + \mathrm{ROH} \\ \mathrm{HCOOR} + \mathrm{R'NH}_2 &= \mathrm{HCONHR'} + \mathrm{ROH} \\ \mathrm{HCOOR} + \mathrm{R'R''NH} &= \mathrm{HCONR'R''} + \mathrm{ROH} \end{array}$

An Stelle der Ameisensäureester können auch die Säurechloride oder die Säureanhydride verwendet werden³). Bei der Umsetzung freier Ameisensäure mit aliphatischen Aminen wird neben den Alkylformamiden auch Wasser gebildet:

 $\mathrm{HCOOH} + \mathrm{RNH}_2 = \mathrm{HCONHR} + \mathrm{H}_2\mathrm{O}$

Es stellt sich dabei ein Gleichgewicht ein, das sich durch Anwendung eines Überschusses an Ameisensäure stark auf die Seite des Alkylformamids verschieben lässt⁴).

¹) Heinrich Winteler ist vor dem Abschluss seiner Promotionsarbeit am 23. August 1953 gestorben.

²) A. Mailhe, C. r. 176, 1159 (1923).

³) G. F. D'Alelio & E. E. Reid, Am. Soc. 59, 109 (1937).

⁴⁾ J. A. Mitchell & E. E. Reid, Am. Soc. 53, 1879 (1931).